MSc Object-Oriented Software Technology

Software Engineering Research Methods

“Component Technology”

Contents

1
Introduction
1

2
Component Fundamentals
4

2.1
Defining Components (components versus objects)
4

2.2
Interfaces
6

2.3
Contracts
7

2.4
Components and Inheritance
9

2.5
Size
11

2.6
Summary
13

3
Component Standards
14

3.1
Introduction
14

3.1.1
The past
14

3.1.2
The present
15

3.2
OMG CORBA
16

3.2.1
OMA
16

3.2.2
In conclusion
19

3.3
Microsoft COM/DCOM
21

3.3.1
COM inner workings
21

3.3.2
COM services/technologies
24

3.3.3
In conclusion
26

3.4
Sun Java
28

3.4.1
JavaBeans
28

3.4.2
Other Java services
29

3.4.3
In conclusion
31

3.5
Which way?
32

3.6
Summary
34

4
Conclusion
35

4.1
Final thoughts…
35

4.2
Personal statement…
37

Appendix
Presentation slides (used in the document for referring to diagrams)
39

REFERENCES
58

Books
58

Papers
60

Articles
61

Internet Sites
62

1. Introduction

“ Follow the lead of hardware design! It is not right that every new development should start from scratch. There should be catalogs of software modules, as there are catalogs of VLSI devices: when we build a new system, we should be ordering components from these catalogs and combining them, rather than reinventing the wheel every time. We would write less software, and perhaps do a better job at that we do get to write. Wouldn’t then some of the problems that everybody complains about – the high costs, the overruns, the lack of reliability – just go away? Why is it not so?”

Those were the words of Doug McIlroy from the 1968 NATO conference on software engineering, taken from [Mey97]. Components are well established in all other engineering disciplines, but until recently were unsuccessful in the world of software. Therefore, we can see how we can benefit from components in the software industry since all other engineering disciplines have introduced them and have succeeded. In addition, we can envisage how components can provide the middle-path solution to one of the main software development dilemmas: develop ‘in-house’ or ‘outsource’. Companies will be able to purchase ready-made components (outsource) but, by assembling the various components (including their own developments), opportunities of customisation arise (in-house).

[Lim98] uses the same terminology for both components and assets: “Assets are the products or byproducts of the software development process. They include both tangible (e.g., code, design, algorithms, test plans, and documentation) and intangible (e.g., knowledge and methodologies) elements.”. In this report, we take a different view, limiting the examples of possible components to code. [Wir90] defines components as follows: “Components are entities that can be used in a number of different programs. For example, lists, arrays, and strings are components of many different programs. …” Although we agree with other points made in Wirfs-Brock’s book on the subject, we find her examples of components too fine-grained. A fuller definition of components as perceived in this report can be found in chapter 2. Having stated that, we will briefly describe them next.

Software components: They are modules within larger systems – and in fact are used as base building blocks for applications. They are developed & executed independently, they are able to communicate with other components and therefore are (should be) defined by well-documented & well-specified interfaces. A software component is what is actually deployed. The promise of component-based development (CBD) is to enable us to ‘plug together’ systems by assembling (combining & integrating) pre-engineered and pre-tested software components. Currently, the drive behind CBD is interoperability between components across platforms, languages and the like, so a first step is to insist that components come in binary form.

Components might remind us of objects, but we should not confuse the two separate concepts. Although a component can be a single class, it is more likely to be a collection of classes, sometimes called a module. In addition, a component could just as well use some totally different implementation technology, such as pure functions or assembly language, and look not at all object-oriented from the inside [Szy98].

What is more, from a marketing point of view, components mean something to the client (they are directly usable), whereas objects do not. Combining objects (classes really) in order to build applications is something better left to programmers. However, for components to become successful component assembly should be easy to do – contrast scripting with programming.

We mentioned that components are used for composing systems and noted how important interoperability is. Component standards can help in those areas by essentially agreeing on common models. By doing so, standards facilitate integration and mutual understanding between many clients & vendors, without requiring explicit communication between the parties.

The only component standard that originated from a standardisation body is the Common Object Request Broker Architecture (CORBA) developed by the Object Management Group (OMG), which has more than 750 member organisations [wOmg]. Examples of where a market was built first and formulation & publication of standards followed, are Microsoft’s COM [wCom] and Sun Microsystems’ JavaBeans [wBean].

Most of today’s standards focus on communications infrastructures through which components of different programming languages and on different operating systems can use well-defined ways to interact with each other and with commonly provided services. What is needed is strengthening of domain-specific standards such as banking, medical services, electronic commerce etc. A step in that direction are business objects.

Finally, an approach where more research could go in, is that of component frameworks. A component framework is a set of interfaces and rules of interaction that govern how components ‘plugged into’ the framework may interact.

Until now, we have only overviewed component technology in order to give the reader a general taste of what is to come. The following chapter (ch.2) takes a deeper look at issues touched upon in this chapter and at numerous other component concepts and problems. Having established the necessary knowledge, chapter 3 will examine the current component infrastructures/architectures. Finally, chapter 4 will conclude our investigation in component technology by previewing other issues and summarising the findings of the whole report.

2. Component Fundamentals

2.1 Defining Components (components versus objects)

To begin, we must try to distinguish the terms ‘object’ and ‘component’. We believe that component technology is an evolution of object technology, but that not all properties of the one apply to the other.

[DSo99] believes: “Many components are not very different from large-grained objects, even if their implementation uses multiple classes. […] But components do bring with them a improved focus for large-scale software development …”

As a component is a unit of deployment and of third-party composition, it needs to be well separated from its environment (including other components) and it needs to come with clear specifications of what it requires and provides. We can summarise by stating that components need to encapsulate their implementation and interact with their environment through well-defined interfaces. Objects also encapsulate behaviour, but also state; they too make their services available through interfaces, but the developer can assume the conditions/environment under which the object will be used.

A major difference is that components, unlike objects, do not have state (persistent or not) [Szy98]. Since a component does not have state it follows that it cannot be distinguished from copies of its own; in any given process there will be at most one copy of a particular component. Here, we must remember that objects are instances of classes, whereas components typically come to life through a number of objects.

Components are relatively similar to modules (‘packages’ in Ada), that is, they can be used to package many abstractions into one unit (similar to ‘packages’ in Java but not the same). Unlike classes, modules cannot be instantiated, but they cannot be parameterised either; components should be able to be parameterised. To conclude, packages are not components, but modularity is a prerequisite for component technology.

It is now appropriate to share with the reader the component definition we use in this report, first derived at the 1996 Workshop on Component-Oriented Programming, taken here from [Bos98]: “A component is a unit of composition with contractually specified interfaces and explicit context dependencies only. Components can be deployed independently and are subject to composition by third parties.”
[image: image1.wmf]
A representation of a component in the Unified Modeling Language (UML), [Rum99].
2.2 Interfaces

“Interface: A collection of operations that are used to specify a service of a class or a component.” [Boo99].

We know that components interact with each other and with their environment through well-specified interfaces. A component’s interfaces define its access points through which it makes its services available. Similar to an object’s interface, it has a name, a syntax, a signature and – of course – semantics. In the component’s case the name of the interface should be unique (like a barcode), as the environment of use is not known at development time and therefore name clashes are more likely. In addition, the semantics should be very explicit and should have clear meaning for both the client and the provider of the interface – as the latter forms the contract. The interface(s) should be well specified, to the degree where the component could be reused without looking inside (at the actual definition – the code).

We are assuming that components’ interfaces look like objects’ interfaces; we should remember it is possible for a component to implement itself the interface (or part of the interface) that it offers and not by objects that the component creates. We can imagine a situation where a component (client) uses an interface introduced by another component that is implemented by a third component (provider).

Like with applications, components can be ‘upgraded’ to later versions (the vendor providing upward compatibility). Since the process of interface-invocation works essentially via object references being passed around, it is possible that the client component passes the object reference it was given to another client. In this case, if the service required was of the original version, it might suit the former client component but not necessarily the latter client component (it might be expecting the latest version). This is known as the transitive versioning problem and, unless versions are checked in every place where an object reference crosses component boundaries, version checking is not sound [Szy98].

2.3 Contracts

Since components are developed (and deployed) independently of each other and since they must be able to successfully interact with other components that are not known at development time, there must exist a contract between the client and the provider of the component. Therefore, since components are used for the services that they provide, which in turn are made available through their interfaces, the contract is in essence the interface specification.

A first step towards contractually specifying an interface is to apply the ‘Design by Contact’ principle as introduced by Bertrand Meyer. We can introduce preconditions (input conditions) and postconditions (output conditions) for individual operations. The precondition states the properties that must hold whenever the operation is called; the postcondition states the properties that the operation guarantees when it returns. In addition, invariants are used to capture deeper semantic properties and integrity constraints characterising the whole. Invariants are global consistency conditions both assumed and maintained by every operation belonging to the interface(s). [Mey99] insists that “For components, Design by Contract is not a cute addition but essential to success”.

A different (complementary) approach to introducing contracts is via formal specifications, e.g. using abstract statements. [Büc97] argues that pre- and postconditions being predicates cannot contain calls to other methods apart from pure functions, which means that by using them we have to ‘reinvent the wheel’ afresh for each method, rather than being able to build upon other specifications. Specifications in the form of abstract statements are not affected by this scalability problem, since they allow for external calls. The specification language should be similar to a well-known implementation language and, in order to gain full benefits, tool support is required. In addition, with refinement, implementations are guaranteed to adhere to their specifications and that new versions are plug-compatible and with nondeterminism, more choice for the implementation is left that can be used for optimizations. Martin Büchi concludes “…we regard them [formal methods] as a necessity for the establishment of component software”.

At this point, it is worth noting that a system with formal contracts throughout is a rarity, but also that a system’s quality with no formal underpinnings is not guaranteed. It is safe to assume that not all parts of a system (except in extreme case) will be of a critical nature requiring formal specification. Consequently, a suggested approach is to ‘pick and choose’ which parts will be specified more rigorously than others.

Finally, components also need to specify required interfaces: interfaces the component expects to find in the deployment environment (context dependencies). Specifying such needs for components – interfaces they rely on – is necessary in order to build complex systems [Ciu96]. An obstacle to the concept is the existence of different component worlds, based mainly on CORBA, COM and Java.

Until now, we have regarded contracts as covering functional correctness only: guaranteeing that nothing ‘bad’ takes place and ensuring that the correct results are produced. Nonetheless, there could possibly exist non-functional requirements. These are also referred to as service level [Szy98]; they cover guarantees regarding availability, mean time between failures, mean time to repair, throughput, latency, data safety for persistent state, capacity, and so on. In other terms, these are the quality attributes of a component. Presently there exist no implementations (with formal contracts or otherwise) that cater for such requirements.

2.4 Components and Inheritance

We shall not define inheritance here, as knowledge of OO concepts has been assumed. Nevertheless, we must distinguish between the three facets of inheritance, taken from [Szy98]:

1) implementation inheritance or subclassing – inheritance of implementation fragments/code,

2) interface inheritance or subtyping – inheritance of contract fragments/interfaces,

3) promise of substitutability

We have to examine carefully the impact of implementation inheritance
 on components. Such is the significance of the impact of inheritance on components, that the term describing it is called the fragile base class problem [Mik97]. The problem can be summed up as a question: Can a class evolve (e.g. be substituted for another version) without violating its subclasses?

Consider a client having received a component that is composed of several classes. The client decides to inherit from one of the classes and overrides several methods. The component developers have now improved their component and release its new version claiming backward compatibility. The new version might fit in with the rest of the client’s system and provide the same functionality; however, in all likeliness, the client’s component extensions are broken.

There are two aspects of the problem: the syntactic (recompilation of derived classes should not be necessary when their parent evolves) and the semantic aspect (derived classes should remain valid when the implementation of their parent evolves) [Mik98].

The syntactic aspect is a technical issue, and its solution is claimed by IBM’s System Object Model (SOM) [wSom]. The semantic aspect does not seem to be addressed currently by any mainstream approach. It should be apparent that the problem is greater when the parent and child classes are in separate components (use of inheritance across component boundaries).

The root of the problem is based on the fact that implementation inheritance – by exposing a subclass to details of its parent’s implementation – breaks encapsulation: i.e. a subclass can interfere with the implementation of its superclass. In order to ‘discipline’ implementation inheritance, several approaches have been suggested.

A first step in the right direction is fragmenting the interface to parts that are private to the class, protected parts that are visible to subclasses and public that third parties can see (as used in C++ & Java). Although this approach helps control inheritance, it is not complete as it does nothing to control usage by subclasses [Szy98]. Another approach is the notion of reuse contracts, which are annotated interfaces that ultimately determine how classes are reused, that is they bind classes and their subclasses – for more on reuse contracts the reader is referred to [Ste97].

Instead of trying to address the problem by constraining the interface, an alternative to implementation inheritance is introduced: object composition – a technique for reuse. If, whenever an object is asked to perform a job that it cannot complete on its own, it asks for help from another object that is considered part of it, we have object composition
. In our opinion, [Gam95] covers the technique completely:

“Object composition is defined dynamically at run-time through objects acquiring references to other objects. […] Because objects are accessed solely through their interfaces, we don’t break encapsulation. […] Moreover, because an object’s implementation will be written in terms of object interfaces, there are substantially fewer implementation dependencies. […] Favoring object composition over class inheritance helps you keep each class encapsulated and focused on one task.”
2.5 Size

When deciding to partition a system into components, the question of how big or small components should be arises. Generally, coarse-grained partitionings are required and thus ban individual classes as components.

To summarise [Szy98] on the subject, there are different aspects that designers should consider when choosing the size of components:

· Abstraction – ‘With abstraction, less becomes possible in theory but more becomes possible in practise’

· Accounting – In this way it becomes possible to link costs and benefits to acquired components and their vendors

· Analysis – Only good partitioning allows to reliably construct (synthesise) or understand (analyse) a complex system

· Compilation – To enable more global optimisations, compilation units should be as large as practically feasible

· Delivery – too small: cost of delivery exceeds value of deliverable

too large: market for deliverable may shrink

· Dispute – When faced with a system failure, users should have a right to trace the failure back to the offending component

· Extension – Often need to extend multiple classes/objects to perform a component extension

· Fault containment – Faults due to resources and not components. Components require explicit resourcing decisions and policies

· Instantiation – Unit of instantiation is an object

· Loading – It is usually more efficient to load the whole component as a unit

· Locality – It is normally a useful strategy not to split up components across processes or machines

· Maintenance – Need to make sure that those parts of a system that are most susceptible to change can be maintained without affecting the rest of the system

· System management – More likely, units of management will be subsystems located on server machines

On the subject of component size: “Certain platforms are better suited to coarse-grained components. CORBA is an example; […] Other technologies support browsing and using a large number of discrete fine-grained components. Digitalk Parts and Microsoft OLE controls are examples of this approach.” – taken from [Kai96].

To conclude we should state the obvious: strive for balance. Having too many components in a system results in difficult to manage situations, and having too few reduces flexibility. Broad reuse requires finer grained components, but reuse needs to be in big chunks for convenience.

2.6 Summary

In this chapter, we started by defining components and their characteristics including interfaces. We then examined components in relation to contracts, inheritance and aspects of size. Having established the fundamental background, we shall briefly describe and compare the major approaches to component technology. More specifically, in the next chapter we look at the current standards based on CORBA, COM and Java.

3. Component Standards

3.1 Introduction

3.1.1 The past

In the beginning, interoperability of software was limited to binary calling conventions at the procedural level. Operating systems supported a variety of mechanisms for inter-process communication (IPC), e.g. files, pipes, semaphores and sockets. All of these can be extended to work across networks, but none of them – with the exception of sockets – is portable across platforms.

IPC mechanisms that operate on the level of bits and bytes cannot ‘handle’ the world of procedures with typed parameters and therefore a new infrastructure was introduced: remote procedure calls (RPC). In order to access the remote portion of an application, special function calls, RPCs, are embedded within the client portion of the application program. When the client program is compiled, the compiler creates a local stub for the client portion and another stub for the remote portion of the application. The client portion makes a call to the local stub that marshals (linearises) the parameters and sends them to the other stub at the remote end that unmarshals (delinearizes) them, and calls the true remote portion of the application. The called and the caller are unaware of the whole process; it is transparent to them. [wRpc]

The most well known service implementing RPCs across heterogeneous, networked platforms is the distributed computing environment (DCE), developed and maintained by the Open Systems Foundation (OSF). To automate the creation of stubs, DCE introduced an interface definition language (IDL). It also introduced the concept of universally unique identifiers (UUIDs) that are much like license plate numbers. DCE is successful in ‘dealing’ with procedural invocations, but the latter differ from object invocations, which is what we are interested in. The main difference is that object invocations rely on the very late, data-driven selection of code to call. The standard interfaces used by the DCE, as well as all the source code itself, are defined in C. For object-oriented (OO) applications, it may be more complex, less productive and less maintainable to use a non-OO set of services like the DCE. [wDce]

3.1.2 The present

All current approaches are based on interfaces as described in chapter 2. They differ into what interfaces are connected to. CORBA, based on a traditional object model, defines a one-to-one relationship between objects and interfaces (but the interfaces can belong to a multiple inheritance hierarchy). COM defines a many-to-many and Java defines a one-to-many relationship between objects and interfaces. They all define them using an IDL: OMG IDL and COM IDL are the competing proposals of CORBA and COM respectively. Java IDL is just a mapping to the OMG IDL. They all support polymorphism through their interface mechanisms, but they differ in the details.

We will now examine these current approaches (CORBA, COM, and Java) in the following three sections.

3.2 OMG CORBA

The OMG, founded in 1989, is the largest industry consortium including member organisations representing computer manufacturers, independent software vendors and a variety of government and academic organisations. The original aim that the OMG wanted to fulfil was the cross-language, cross-platform interoperability of distributed OO systems. The outcome was CORBA 1.1 in 1992, CORBA 2.0 in 1996 and the current version of CORBA 2.3. CORBA 3.0 is due for release this year. CORBA is a specification that CORBA-compliant vendors should follow when developing their products.

One of the important pieces of the CORBA specification is the OMG IDL. It is a formal mechanism for specifying the interface of a distributed object (CORBA terminology for component) in a way that is independent of its implementation. Several implementation language bindings/mappings have been defined including Ada, C, C++, Smalltalk, and Java. Its syntax is a subset of C++ syntax, so it is easy to learn (if you know C++, that is). Today, the OMG’s focus is the object management architecture (OMA).

3.2.1 OMA

OMA is a collection of related specifications that defines a broad range of services for building distributed applications. It revolves around the CORBA specification and further adds three new areas of standardisation: a set of common object services specifications (CORBAservices), a set of common facility specifications (CORBAfacilities) and a set of application objects specifications (fig 1). We shall examine the four elements OMA consists of next. We start with the CORBA ORB.

3.2.1.1 The CORBA ORB

The ORB (fig.2) is the heart of CORBA. It allows objects to communicate transparently, irrelevant of their location (local or remote). A simplified view would be that ORB is the RPC for objects. For the rest of this description, we shall describe each of the elements that appear in slide 12 on page 45. It is important to understand that the separation into calling and called parties does not imply client/server-computing distinctions; a party can be both issuing and receiving events. By reading all descriptions, the reader should be able to understand the sequence of events and the whole process of remote object invocation.

· Client program – This is the entity that invokes an operation on an object implementation (given that it holds a reference to the server object)

· Server program – This holds the server object that defines operations that implement (in any supported language) a CORBA IDL interface

· IDL stubs – Generated by the IDL compiler for each interface defined in IDL. A stub looks like a local object, a proxy for the remote server object. It receives invocations from the client, performs marshalling and forwards the invocation through the ORB to the real server object

· Dynamic invocation interface (DII) – It is used when the operation to be invoked needs to be selected at runtime. The interface repository allows some measure of type checking to ensure that a server object can support the request made

· Interface repository – It contains machine-readable versions of the IDL interfaces. They can be obtained and modified through the ORB interface

· ORB interface – It supports ORB services (helper functions) that are presumed to be widely available (e.g. converting an object reference to a string, and vice versa). It can be invoked from the server or client
· IDL skeletons - Generated by the IDL compiler, skeletons are the server-side (static) interface for requests
· Dynamic skeleton interface (DSI) – The server’s side analogue to the client’s side DII. It provides a runtime binding mechanism for servers that need to handle incoming method calls for objects with no compile-time knowledge

· Implementation repository – It mainly registers compiled program fragments that can provide implementations for the interfaces of the interface repository

· IDL compiler – takes IDL statements as input and then maps them into a target language. The target code produced by the IDL compiler occurs in pairs: stubs & skeletons
· Object adapter (OA) – It associates object implementations with the ORB and assists the ORB with activating & delivering requests to the server object. OAs can be specialised to provide support object implementation styles (e.g. OODB adapters for persistence and library object adapters for none-remote objects). So far there exist two types of OA: the Basic OA (BOA) & the Portable OA (POA).

· ORB Core/ ORB interoperability – For different implementations to be able to interact, the General Inter-ORB Protocol (GIOP) is specified as the common interface, including message type and format that is required for general interoperability. Internet Inter-ORB Protocol (IIOP) is a semantic layer specified to map the GIOP into TCP/IP. In addition to IIOP, CORBA supports Environment-Specific Inter-ORB Protocols (ESIOPs) for out-of-the-box interoperability support over specific networks. The first ESIOP specified is one based on DCE and acts as the glue between the ESIOP and TCP for those specific environments where the DCE protocol is useful.
To summarise, the sequence for method invocation through the ORB has as follows:
1) Client calls method through stub
2) ORB hands request to the OA, which activates the server program
3) The server program invokes the OA to say it is active and available
4) OA passes the method request to the server object via skeleton
5) The server object returns result (or exception) back through the ORB

3.2.1.2 CORBAservices

The ability to communicate is important, but for objects to work effectively together additional services are needed. Objects need to know where to find each other, whom to trust, and how to manage their lifecycles. Programs need the ability to create an object, name it and introduce it to the environment. The answer is CORBAservices, which are collections of system-level services packaged with domain-independent IDL-specified interfaces for use by distributed object programs. OMG has published standards for 15 object services, but instead of describing them we just mention them in slide 13 on page 46.

3.2.1.3 CORBAfacilities

If CORBAservices operate at the system level, CORBAfacilities operate on the application level: they are a level up in the semantic hierarchy. They define specific horizontal (general) and vertical (domain-specific) application frameworks (rules that can be used to integrate components). The work is under construction, but plans include mobile agents, data interchange, workflow, firewalls, business object frameworks, internationalisation, information/system/task management, and user interfaces.

3.2.1.4 Application Objects

Application objects are the business objects and applications that serve a specific application domain. This is the highest category in OMA, and its most long-term aspect. Business objects are the ultimate consumers of the CORBA infrastructure. The goal is to have business objects, not just inter-operate but to collaborate at the semantic level to get the job done. This is also under construction, but examples of a business object might be a customer, a stock object, a chemical reactor, a portfolio or a car in a company’s fleet.

3.2.2 In conclusion

3.2.2.1 Observations/ Omissions/ Additions

In the CORBA 2.1 specification, the CORBA/COM interworking standard has been specified. It defines how a CORBA interface (including its multiple super-interfaces) is to be mapped to a (set of) COM interface(s) and it creates a COM View for every mapped CORBA object. The same interworking standard defines how a COM interface (but not multiple ones as allowed by COM) is mapped to a corresponding CORBA interface and it creates CORBA views of COM objects. Of course, a COM view of a CORBA object can only be manipulated by CORBA-aware code.

It must be made clear that CORBA is just a specification, and as such is only as strong as its implementation(s). For a product to be CORBA-compliant it suffices that it implements the interfaces to all the elements depicted in slide 12, a definition of IDL syntax and semantics, a definition of the object model that underlies CORBA and one language mapping. It is not necessary for a vendor to provide CORBA interoperability or interworking or the CORBAservices/CORBAfacilities. In addition, compliant products are very much different with each other, not only from an implementation’s point of view but also in relation to what they provide (including vendor specific add-ons). Thus, users of one product are not automatically able to use a different one, which leads to market fragmentation.

3.2.2.2 The future

OMG has been working for around two years on the CORBA 3.0 specification, and much has been promised. Included in the plans are a Component Model (the most important), a scripting language for easy composition of components, specification for passing IIOP through firewalls, support for passing objects-by-value (Java-style), and support for multiple interfaces (COM-style). What exactly will be supported we shall find out soon, as the release of the specification is expected this year (towards the end of the summer).

However, there are indications that instead of introducing a component model, Enterprise JavaBeans (EJB) will be adopted [wPress]. The closer/tight integration of CORBA & Java has been hinted at before and there has been much talk about how one technology complements the other and a – kind of – merge is not impossible in the future. Whether this is good is a different issue, as one can foresee language neutrality abandoned (Java being the dominant language) and Sun emerging as the major CORBA-compliant vendor. I hope that, CORBAcomponents will only provide interoperability with EJB and not rely on it. It all remains to be seen.

3.3 Microsoft COM/DCOM

Microsoft has COM at the foundation of its object/component strategy. COM is both a specification and an implementation that provides a framework for component creation and interaction. It is a binary standard, so any component that adheres to its binary structure can inter-operate with others even if they are written in different implementation languages. Distributed COM (DCOM)
 is just an extension that enables cross-platform networked interaction between components.

3.3.1 COM inner workings

3.3.1.1 Interfaces

The fundamental entity of COM is an interface (COM supports single interface inheritance only and no implementation inheritance). The binary representation of a COM interface is depicted on slide 16 on page 48. A COM object can support any number of interfaces. Interfaces are specified in COM IDL (different to OMG IDL), which is an extension of DCE IDL. To avoid name collisions each interface must have an interface identifier (IID). An IID is a GUID; a GUID is a modified form of a DCE UUIDs. Interfaces also have readable names that by convention start with a capital “I” (e.g. IMyExampleInterface).

Each COM object must support the IUnknown interface. IUnknown serves to identify a COM object, because COM requires that a given COM object returns the same interface node pointer each time it is asked for the IUnknown interface. It is also used for interface negotiations, life-cycle management and aggregation by supporting three methods: QueryInterface, AddRef and Release. All interfaces in COM directly or indirectly inherit from IUnknown and provide implementations for the three methods aforementioned. QueryInterface takes the name of an interface as a parameter, checks whether the current COM object supports the named interface and then returns it (if the requested interface is not supported an error indication is returned). COM objects monitor their usage (or their interfaces’ usage) by performing reference counting. Each time a copy of a reference is created, AddRef is called to increment the counter; each time a reference is given up, Release is called. This co-operative garbage collection only works if every component plays by the rules.

Because a COM object can support multiple interfaces, its type is the set of interface identifiers of the interfaces it supports. Therefore, a subtype of a COM object is one that supports a superset of the interfaces it supports. That is the way polymorphism is achieved in COM (remember COM does not support implementation inheritance). To support efficient handling of sets of interfaces, COM provides categories, which are roughly defined as sets of interface identifiers. Categories have category identifiers (CATID) that are GUIDs. Besides specifying which interfaces must be supported by a COM object, categories have a contractual nature: they specify which methods must at least be implemented (as a provider of a COM object may decide not to implement a method of an interface the object supports).

Finally, because a COM object can support multiple interfaces, it nicely addresses versioning. If an interface once published is never thereafter changed, when the provider wishes to improve it they can create the newer version and have the object support it. Thus, old clients can continue using the old version, while new clients can take advantage of the newer version.

3.3.1.2 COM objects and COM servers

The reader might have noticed that we have not stated anything about object identity; this is because there is not one. At runtime, the client accesses the objects’ services through IIDs but it cannot refer to the object as a whole. The interfaces that a COM object supports are defined by its class. To identify classes of COM objects there are class identifiers (CLSIDs), which are GUIDs.

COM objects run inside COM servers (slide 17 on page 48). A single server can support more than one COM object (actually it contains one or more classes that it implements, but we use the two terms interchangeably). A COM server is a piece of code and, for each class that it implements, it also implements a class factory. A factory is an object that supports IClassFactory (or IClassFactory2, where licensing is required). A COM server can be one of three types depending on the location of the object in relation to the client (the following description includes the three different ways for a client to access an object depending on their relative locations – see slide 18 on page 49):

· In-process server (DLL): When both client and object are in the same process communication is accomplished by direct method calls.

· Local server (EXE): When the client and object are both running locally but in different processes. Communication is achieved through an inter-process communication (IPC) mechanism, which really is a lightweight RPC (LRPC).

· Remote server: When they are running on different machines. Communication is achieved through a DCE RPC based DCOM protocol.

The element that locates servers and gets involved with communications between clients and servers is called Service Control Manager (SCM). It is part of the system registry (similar to the CORBA implementation repository).

3.3.1.3 COM object creation

We now know how interaction takes place but how do COM objects come to life (?). The answer is with the help of the COM library – a procedural interface library that provides runtime services and APIs whose functions start with the Co prefix that stands for component. A COM object is created by a call to CoCreateInstance that takes as parameters a CLSID and an IID. If the CLSID is in the registry then the latter (through SCM) locates the corresponding server and, unless already active, loads and starts it. Once the server has loaded, it creates and registers the class factories for each of its classes by invoking CoRegisterClassObject. CoCreateInstance uses the appropriate class factory by calling one of its methods (CreateInstance or CreateInstanceLic) for creating the instance and returning to the client the required interface. The creation process is captured on slide 19 on page 50. [Alternatively, a client can also communicate with the factory directly, for efficiency, using CoGetClassObject].

3.3.1.4 Object composition in COM

To enable object reuse COM supports two forms of object composition: containment and aggregation. Containment is the technique where one object holds an exclusive reference to another object (i.e. only it knows about it). The former object is usually called the outer object and the latter is called the inner object. The outer forwards request to the inner, which handles them; the process is transparent to the client (slide 20 on page 51).

Aggregation is used for efficiency when containment hierarchies become too deep. Here, the outer object directly exposes the inner object’s interfaces as its own to the client and hence allows the client to call directly upon them; the cost of forwarding is removed (slide 20 on page 51). Note that the inner object must co-operate by forwarding calls made to its QueryInterface, to the outer object’s QueryInterface (since it is the inner object’s IUnknown that is exposed to clients).

3.3.2 COM services/technologies

COM includes interfaces and API functions that expose, amongst others, operating system services necessary for a distributed environment.

3.3.2.1 Type library

Once interfaces and classes have defined in COM IDL, it is ‘given’ to the Microsoft IDL compiler (MIDL) which – besides creating stub and proxies – also creates type libraries (.tlb). They are used to provide runtime access to type information for all interfaces and classes that they describe. Clients use the CLSID of the class they are interested in to query the COM registry. The latter locates a corresponding type library (if one exists) and returns to the client an ITypeInterface that is used for navigating the type library. A type library is the equivalent to CORBA’s interface repository.

3.3.2.2 Persistence and Structured Storage

Object persistence in COM is achieved through its structured storage. Structured storage is like a file system within a file; it is a tree structure. The root of the tree is called the root storage, its inner nodes are called storages and its leaf nodes are called streams. Streams are the ‘files’ of a structured storage and that is where COM objects can store their data.

In passing, when an object is created it still needs to be initialised. The most direct way to accomplish that is to ask it to load its data from a data store, e.g. a stream. COM defines a collection of interfaces for this purpose, which are all derived from IPersist and named IPersistFile, IPersistStream and so on.

3.3.2.3 Monikers

Monikers are objects that are used in order to refer directly to a persistent object. Such references can be used to ask the system to find and load the required server, create the referred object, and initialise the new object from its source. A moniker can be asked to bind to the COM object it represents. One might view monikers as substitutes to object identifiers; a moniker refers to an object by specifying a logical access path.

3.3.2.4 Uniform Data Transfer

Unified Transfer Data provides for data transfers between COM objects. Such objects are called data objects and for a COM object to become one, it has to implement the IDataObject interface. Uniform data transfer defines a number of standard data formats. Examples of data transfers are clipboards, files, streams and so on.

3.3.2.5 Dispinterfaces

Dispinterfaces (the equivalent of a CORBA DSI) have a fixed number of methods defined in interface IDispatch. A dispinterface combines all methods of a regular interface into a single method: Invoke. The latter is called by clients passing it a dispatch identifier (DISPID). The COM server decides at runtime which method to invoke based on the DISPID. IDispatch, in addition to Invoke, provides three other methods that need to be implemented for every exposed object: GetTypeInfoCount, GetTypeInfo and GetIDsOfNames. These are used to help clients get the runtime information they need to call invoke.

To compensate for the high performance costs, dual interfaces may be introduced. A dual interface is both a dispinterface and a regular interface; it provides all dispatched methods directly. Clients compiled against the interface can call methods directly.

3.3.2.6 Connectable objects

The interfaces we have used so far are incoming interfaces. A COM object may declare outgoing interfaces. An outgoing interface is an interface that an object can use if ‘connected’ to an object that provides this interface
. For a COM object to become a connectable object it must declare outgoing interfaces, implement interface IConnectionPointContainer, and for each outgoing interface provide a connection point object that implements interface IConnectionPoint. A connection is established by passing an interface reference of another object to the connection point. Two-way communication with connectable objects is efficient, as it takes the form of regular method invocations.

3.3.2.7 Microsoft Transaction Server

One of the services that COM/DCOM offer in the form of a server-side transactional co-ordinator for COM components is the Microsoft Transaction Server (MTS). Some of the features it supports, as claimed by Microsoft, are: automatic transactions, configurable security, database connection pooling, automatic thread support, component state management, process isolation through packages, integration with mainframe transactions, a broad range of development tools and support for multiple databases and resource managers. MTS is considered a very important part of COM, adding strength to the technology.

3.3.3 In conclusion

It seems that on the Windows platform Microsoft provides a solid component technology, but whether this scales up to enterprise computing and cross-platform support is yet to be proven. Widespread examples of COM objects are ActiveX controls. There are a number of development tools that aid in creating ActiveX controls and help in using COM technology in general (e.g. Visual Studio products).

An expected enhancement to COM technology is COM+. According to various sources it will ‘ship’ with Windows 2000 (others say Windows NT 5). It is claimed that it will bring higher performance through in-memory database (IMDB), object pooling, integration of the transaction co-ordinator with the OS, attribute based programming (using a declarative model), introduction of constructors/destructors, connectable object at the method level, single implementation inheritance, garbage collection, encapsulation of GUIDs from the developer, it will rid dispinterfaces and it will come in a runtime environment similar to the Java Virtual Machine (JVM). Along with these claims, Microsoft argues that it will integrate the whole infrastructure in the system and not the application, so developers will only be concerned with writing business logic. Again, these are only claims and it all remains to be seen.

3.4 Sun Java

Sun’s approach to component technology is based on (even, integrated in) the Java programming language. This is not the place to describe the Java language so we will have to assume that the reader is familiar with it. If one understands Java, then it is very straightforward to understand and use Sun’s view on component technology, which revolves around beans (Java’s term for component). Beans are generally medium-sized controls.

3.4.1 JavaBeans

JavaBeans is the Java component model. It turns classes into beans by providing several new features. The main aspects of JavaBeans are described below.

3.4.1.1 Events

Beans can announce that they are potential listeners or sources of types of events. An event is an object itself that is created by an event source. User-defined events can be introduced by extending java.util.EventObject. A source must provide a pair of methods for registering and unregistering listeners. A listener must implement an interface that extends the java.beans.EventListener interface. An assembly tool may be used to connect sources to listeners; thus, communication between different parties takes place.

3.4.1.2 Properties & Customisation

A bean can define a number of properties, which are attributes that can affect the bean’s appearance or behaviour. Access to properties is through a pair of accessor (getter & setter) methods. Where an array of properties needs to be maintained, indexed properties are used; the accessor methods take the index or an entire array as parameters. A property can be bound; that is, changes to it trigger an event so listeners get informed of the change. A property can be constrained; that is, whenever a change takes place an event is triggered but, in this case, listeners may veto the change.

Properties can be set/changed via property sheets that contain all the beans’ properties and values. A customiser class provided by the bean helps. So using an assembly tool beans can be customised. In addition, beans can be customised at runtime via interaction with other beans, the user or the environment in general.

3.4.1.3 Introspection

Introspection is the process of programmatically analysing a class’s public methods and members. It is built on top of the reflection mechanism of the java.lang.reflect package. The information is provided by the BeanInfo class, which developers may provide directly, or they can use naming conventions for the methods and allow a bean to be inspected to find out about the properties, methods and events it supports by an assembly tool.

3.4.1.4 Persistence and Packaging

Persistence in Java is achieved through serialisation. A serialised object can be transmitted over a network much in the same way as marshalling, which we described in previous sections. Serialised objects (but not only) may be kept in Java Archive (JAR) files.

A JAR file is a structured .zip file that may contain multiple serialised objects, documentation, images, class files, help files in HTML and any other resource files needed by the bean, with a manifest that describes what’s in a JAR. We should note that there could be multiple beans in a single JAR.

3.4.2 Other Java services

3.4.2.1 Reflection

In short, the Java reflection service allows:

· inspection of classes and interfaces for their fields and methods

· construction of new class instances and new arrays

· access to and modification of fields of objects and classes

· access to and modification of elements of arrays

· invocation of methods on objects and classes

3.4.2.2 Object Serialisation

As mentioned above, for a bean to be made persistent, serialisation is used. For an object to be serialisable, it has to implement one of the following two interfaces from the java.io package: Serializable or Externalizable. All data fields of a bean must be serialisable or, a NotSerializableException exception is thrown. Such fields (and other fields that the developer wishes) may be marked with the modifier transient and the serialisation process ignores them. For further control over serialisation, two private methods may be implemented as appropriate by the developer: readObject and writeObject. For full control over all aspects of serialisation, such as controlling the serialisation of parents, the bean must implement the second interface (Externalizable), which further provides two public methods: readExternal and writeExternal.

The object serialisation service along with remote method invocation (RMI) is the main support for distributed computing in Java.

3.4.2.3 Remote Method Invocation (RMI)

RMI is Sun’s equivalent to OMG’s CORBA ORB and Microsoft’s DCOM. It allows a local call to be carried across machines to the actual target object, keeping the process transparent to the objects. Parameters of local objects are passed by-value (using serialisation) and of remote objects by reference. We should note that all references of distributed objects are by interface type – not class type. The unique feature of Java’s distribution model is garbage collection (not offered by any other approach currently). For a Java object to become a server object, it must extend java.rmi.Remote. Clients find server objects using a naming mechanism, the RMIRegistry. Finally, the native protocol used for communication is the Java Remote Method protocol (JRMP) – equivalent to IIOP or RPC. RMI currently lacks the level of services support offered by the other approaches.

3.4.2.4 Java Native Interface (JNI)

JNI is useful in that it specifies for every platform the native calling conventions when interfacing to native code outside the JVM. In particular, it allows native methods to:

· create, inspect, and update Java objects

· call Java methods

· catch and throw exceptions

· load classes and obtain class information

· perform runtime type checking

All access is through JNI interface pointers (similar to COM interface structure).

3.4.3 In conclusion

JavaBeans’ next generation is so-called Glasgow specification. We give a short description of it in the following long sentence. It is claimed to offer better support for applet semantics (makes it easier to implement objects that are both applets & beans), better design-time support, an extensible runtime containment and services protocol (allows nesting of beans within beans), drag and drop support (allows to drag and drop Java to/from native platform) and JavaBeans Activation Framework (JAF) (writing of helper beans, e.g. plug-ins).

If JavaBeans builds on the JDK distributed facilities then Enterprise JavaBeans (EJB) extends it to support transactions. EJB is a specification of component architecture for development and deployment of distributed enterprise-level applications. It separates transactional logic from business logic; it assumes a distributed object infrastructure and defines a packaging mechanism based on JARs manifest and deployment descriptors. Few implementations exist of EJB but the industry seems to be endorsing it. To put things in perspective, an implementation of the EJB specification would be a direct competitor to Microsoft’s MTS.

In closing, we must not forget that, by taking the Java approach, cross-language development is abandoned: everything is in Java. We have not looked at Sun’s approach in great technical detail because we would end-up writing code. For a Java programmer the approach is as straightforward as it can be. For any/every requirement, one has to implement a specified interface and the goal is achieved.

3.5 Which way?

We have introduced all three approaches to components, so which one is the best to choose? Obviously, there is no one answer to the question; as with so many things in life, different choices are made based on different needs.

Generally and simplistically put:

· OMG is just a specification; choosing it means choosing a compliant product from a vendor. That would probably make future developments dependent on that vendor. That involves waiting for the slow process of OMG’s ‘upgrades’ and, in addition, waiting for the vendor to comply with new versions.

· Choosing Microsoft in effect ties the client to the Windows platform and to one single vendor. Nevertheless, Microsoft is not just any vendor and Windows is not just any platform (the effects of this statement can be good or bad depending on where you are coming from).

· Sun’s approach locks the client into Java for many years ahead. Personally, we do not feel that Java will ever ‘die’, but remember that other languages have failed unexpectedly (e.g. Smalltalk).

The choice of OMG is a safe one in, the sense that over 800 members agree on its specification, so they cannot all be wrong. Microsoft products may allegedly crash every now and then but Microsoft is a leader in many computing fields and it has not failed yet. Sun’s Java is probably the biggest computing success story of the last decade and anybody that gets introduced to it endorses it, so Java-based approaches seem a safe choice too.

As always, times are changing so, at this moment in time (June 99) it is best to wait before making the choice. OMG has announced CORBA 3.0 for a while now, so it should be interesting to see the improvements to the specification. Particularly, will it have its own component model (not one based on EJB) and how fast will compliant implementations appear on the market? Microsoft’s approach is expected to undergo major improvements with COM+ and we will have to see how much truth there is in that when Windows2000/NT 5 are released and tested. Sun’s EJB, like CORBA, is just a specification, so the products that implement it have to be tested in the real world for robustness and compliance.

Most consultants agree that: If large-scale cross- language/platform development is needed, then the choice has to be CORBA. If all development takes place on Win32 platforms, the clear choice is COM. When the web is the target of most development, then Java seems a good choice.

We shall end this section with a quote on the subject that we fully agree with. We came to this conclusion before reading it from Roger Sessions but we shall use his words:

“For those applications you can dedicate to NT, there is no logical business case not to choose Microsoft’s COMWare. For those applications that must run on non-NT platforms, you must then decide on your language strategy. If you are willing to live with Java for the next 30 years, then your obvious choice is EJB. If you want flexibility in languages, wait for products based on the CORBA Component Specification.” [Ses99]

3.6 Summary

In this chapter, we have described the three major approaches to component technology. We started by a brief look at the past approaches to software interoperability and moved on to introduce OMG CORBA, Microsoft COM and Sun’s Java based approach. We provided only enough technical detail that is necessary in order to understand the basics of each approach. In the next chapter, we have a look in the future and conclude this report with some final thoughts.

4. Conclusion

4.1 Final thoughts…

So where do we go from here? Will CORBA 3.0 deliver the complete solution that powerful vendors like IONA (Orbix) or Visigenic (Visibroker) will implement immediately eliminating competition? Will COM+ deliver on its promises and effectively leave no other choice for component development on the Windows platform? Will Enterprise JavaBeans provide the ultimate solution combined with CORBA (vendors such as IBM already have products – Component Broker – on the market that comply with both CORBA and EJB)? Maybe, as some believe, the re-emergence of Linux combined with CORBA, Java and the Internet, will develop into a potential non-proprietary platform to host components, their services and their platform.

We could investigate more into these standards and conclude that CORBA would benefit from binary standards, Java – with its packages – is getting too large, and Microsoft is becoming too complex especially since it attempts to offer backward compatibility and therefore carries a lot of unnecessary ‘baggage’. Then again, we might be looking at the situation from the wrong angle. Why should one of the standards emerge victorious? Why can they not all coexist and more effort be put in developing bridges from one to the other? Why not provide cross-standard solutions and instead of picking a camp support all of them?

In any case, research focus could be geared towards other areas such as object composition. We described the fragile base class problem and concluded that the only solution (by avoidance) was object composition. We examined such an approach as implemented in COM. The result is one that works albeit introducing a complex web of objects were the notion of identity is almost lost. Perhaps it is time to put as much research effort into object composition as was put in inheritance. Alternatively, some real clever solution might deliver inheritance without the problems mentioned in section 2.4.

It is possible that by exploring component technology at a high level we have neglected to explore lower level details such as new programming languages. We are arguing about binary standards (so all languages can be used for development) and about how powerful Java is (and if it will last) but maybe the obvious has escaped us: a new language introduced especially for component development might provide the real solution. First examples are Component Pascal and Connective C++ (CC++) [wCC+]. Component Pascal is described as type- and module-safe and particularly suited for component-oriented programming. CC++ is an extension of C++ adding the component keyword and concept to the language. Regardless, component CBD is still in its infancy and more methodologies (like the one in [DSo98]) and notations (an extension to UML?) are needed that will focus on component technology in general and not commit to one standard or another.

Another area that definitely needs exploring is quality – we previewed this in section 2.3. How can we improve contracts? How is quality defined or examined in components? Furthermore, how do we know which component to trust? A first step in the right direction has been made [wTru], but there is a lot of ground to be covered. A related issue, that would help open-up markets, is licensing. Both CORBA and COM provide some support but more advanced mechanisms are needed to support similar concepts such as TV’s pay-per-view.

Let us reiterate our statement of section 2.1: Component technology is an evolution of object technology. So, what will be the revolution in component technology? In OO, patterns, and at a higher level frameworks have proved the most effective forms of reuse. In OO, frameworks are in essence collections of collaborating classes. An example of a framework is the well-known MVC. What is the corresponding notion in the component world? The answer is simply component frameworks. A component framework should include rules for component interaction, definition of the roles of components and, of course, it should be able to accept dynamic insertion of components.

The ultimate goal would be component architectures. If the rules and culture of each European country correspond to a component framework, then the rules and ways of interaction of Europe as a whole would correspond to a component architecture.

4.2 Personal statement…

Here, we have introduced components from the ground up, discussed certain issues that distinguish components from objects and explored their most important properties. We described each of the three major/mainstream approaches to component technology that also are the current component standards. Finally, we concluded on thoughts for future development and research.

We hope that this document provides a thorough coverage of component technology in terms of breadth. We would have enjoyed covering some issues in more depth but then the dissertation would have been much longer, exceeding the 10000-word limit (which we have still exceeded, but not by much).

In closing, ‘we’ in this paper refers to both the researcher and author of the work presented here: myself.

Appendix

Presentation slides

The following slides were produced to accompany this dissertation. The presentation was given at the University of Brighton on the 14 June (before completing this dissertation). The diagrams produced for the slides are also referred to in the document.

[image: image2.wmf]
[image: image3.wmf]Component Technology

Daniel DG Moth

[image: image4.wmf]15/6/99

© Daniel DG Moth

2

Component Technology

Agenda:

•

Components quick overview

–

Why components, What are components

•

Component Fundamentals

–

Defining Components, Interfaces, Contracts,

Inheritance, Size

•

Standards

–

OMG CORBA

–

Microsoft COM/DCOM

–

Sun

Java

-based

[image: image5.wmf]15/6/99

© Daniel DG Moth

3

Components Overview (1)

Why components

•

“ Follow the lead of hardware design! It is not right that every new

development should start from scratch. There should be

 catalogs

 of

software modules, as there are

 catalogs

 of VLSI devices: when we build

a new system, we should be ordering components from these

 catalogs

and combining them, rather than reinventing the wheel every time. We

would write less software, and perhaps do a better job at that we do get

to write. Wouldn’t then some of the problems that everybody complains

about – the high costs, the overruns, the lack of reliability – just go

away? Why is it not so?”

–

Doug

 McIlroy

, NATO conference on software engineering, 1968!

[image: image6.wmf]15/6/99

© Daniel DG Moth

4

Components Overview (2)

•

What are components

–

objects

 vs

. components

–

modules, independently developed/executed

–

CBD: plug together systems by assembling components

•

Standards

–

many vendors/clients with no explicit communication

–

facilitate interoperability across networks

–

OMG, Microsoft, Sun

[image: image7.wmf]15/6/99

© Daniel DG Moth

5

Component Fundamentals (1)

Defining Components

•

objects, modules

•

Definition

–

“A component is a unit of composition with

contractually specified interfaces and explicit context

dependencies only. Components can be deployed

independently and are subject to composition by third

parties.”

•

Workshop on Component-Oriented Programming, 1996

[image: image8.wmf]15/6/99

© Daniel DG Moth

6

Component Fundamentals (2)

Interfaces

•

Component’s access points

•

Unique name

•

Well defined semantics

•

Transitive versioning problem

[image: image9.wmf]15/6/99

© Daniel DG Moth

7

Component Fundamentals (3)

Contracts

•

Essentially, the interface specification

•

Design by Contract

•

Formal approaches

•

Required interfaces

•

Non functional requirements

[image: image10.wmf]15/6/99

© Daniel DG Moth

8

Component Fundamentals (4)

Components & Inheritance

•

Fragile base class problem

–

root of problem: implementation inheritance

–

syntactic, semantic

•

Solutions

–

constrain the interface

–

use object composition instead

[image: image11.wmf]15/6/99

© Daniel DG Moth

9

Component Fundamentals (5)

Size

•

Partition system into component according to...

–

Abstraction,

Accounting, Analysis, Compilation,

Delivery,

Dispute,

Extension,

Fault containment

Instantiation,

Loading,

Locality,

Maintenance,

System

management

•

Clemens

Szyperski

, ‘Component Software’, 1998

•

Strive for balance

–

too many components in a system:= difficult to manage

–

too few:= flexibility reduced

[image: image12.wmf]15/6/99

© Daniel DG Moth

10

Component Standards

•

The past

–

Interoperability of software: IPC, RPC, DCE RPC

•

The present

–

CORBA, COM, Java

[image: image13.wmf]15/6/99

© Daniel DG Moth

11

OMG CORBA

•

Who are the OMG

•

OMG IDL

•

OMA

–

CORBA ORB

–

CORBAservices

,

 CORBAfacilities

, Application

Objects

[image: image14.wmf]15/6/99

© Daniel DG Moth

12

OMA (1)

CORBA ORB

IDL

skeletons

Dynamic

skeleton

interface

Object

adapter

Dynamic

invocation

interface

IDL

stubs

ORB

interface

ORB CORE

Client/application program

Server program

Language mapping / generated from IDL compiler

GIOP/IIOP/ESIOP

ORB-specific interface

Standard protocol

IDL

compiler

Interface

Repository

Implementation

Repository

OMG IDL

source

Standard interface

object

objref

.m(

args

)

[image: image15.wmf]15/6/99

© Daniel DG Moth

13

OMA (2)

Compound documents

Desktop management

User interfaces

Object linking

Help facilities

Calendar

Event

Life cycle

Persistence

Transaction

Naming

Time

Security

Licensing

Properties

Concurrency Control

CORBA object request broker

Relationship

Externalization

Query

Trader

Collection

Standardized

 by

vertical market

organisations,

possibly organised

as OMG SIGs

Application Objects

CORBAfacilities

CORBAservices

[image: image16.wmf]15/6/99

© Daniel DG Moth

14

OMG CORBA

In closing…

•

Interworking

standard

•

Remember: It is only a specification

•

CORBA 3.0

[image: image17.wmf]15/6/99

© Daniel DG Moth

15

Microsoft COM/DCOM

•

What is COM/DCOM

•

COM inner workings

–

interfaces, objects & servers, object creation, object

composition

•

COM services/technologies

[image: image18.wmf]15/6/99

© Daniel DG Moth

16

COM inner workings (1)

Interfaces

•

Many interfaces per COM object,

IIDs

•

IUnknown

 interface

–

QueryInterface

,

AddRef

,

Release

•

Polymorphism, categories, CATIDs

Interface

Interface node

vtable

Client variable

op 1

op 2

op 3

op n

.

.

.

[image: image19.wmf]15/6/99

© Daniel DG Moth

17

COM inner workings (2)

COM objects and COM servers

•

Object identity,

CLSIDs

•

COM server

–

in process (DLL)

–

local (EXE)

–

remote (DCOM)

–

LRPC, RPC

–

(also see diagram on next slide)

Server

Class

Factory

IClassFactory

or

IClassFactory2

(EXE or DLL)

COM

Object

Other

interfaces

IUnknown

[image: image20.wmf]15/6/99

© Daniel DG Moth

18

In-

Proc

 Server

Object

Machine A

Machine B

Remote Server

Remote

Object

Client

Proxy

Proxy

DCOM

COM

Stub

COM

LRPC

RPC

Local Server

Local

Object

COM

Stub

[image: image21.wmf]15/6/99

© Daniel DG Moth

19

COM inner workings (3)

COM object creation

Client

Object

COM

Library

Server

1

CoCreateInstance

(CLSID, IID)

2.2 Start/load Server

3 Return interface pointer

4 use interface

System

registry

2.1 Locate Server

[image: image22.wmf]15/6/99

© Daniel DG Moth

20

COM inner workings (4)

Object composition in COM

•

•

Containment

Containment

•

 Aggregation

Object Y

IA

ID

IUnknown

IUnknown

IC

IA

IB

Object X

Object Y

ID

IUnknown

IUnknown

IC

IA

IB

Object X

[image: image23.wmf]15/6/99

© Daniel DG Moth

21

COM services/technologies

•

Type library

•

Persistence & structured storage

•

Monikers

•

Uniform Data Transfer

•

‘

Dispinterfaces’

•

Connectable objects

•

Microsoft Transaction Server (MTS)

[image: image24.wmf]15/6/99

© Daniel DG Moth

22

Microsoft COM/DCOM

In closing...

•

Scaling up

–

Non-Windows platforms, enterprise computing

•

ActiveX controls are examples of COM objects

•

COM+ (Windows2000)

[image: image25.wmf]15/6/99

© Daniel DG Moth

23

Sun Java

•

Java the language

•

JavaBeans

(the Java component model)

–

java

.beans

•

Other Java services

[image: image26.wmf]15/6/99

© Daniel DG Moth

24

JavaBeans

(1)

•

Events

–

and user-defined events

•

Properties

–

simple, indexed, bound, constrained

•

Introspection

[image: image27.wmf]15/6/99

© Daniel DG Moth

25

JavaBeans

(2)

•

Customisation

–

design time, runtime

•

Persistence

•

Packaging

–

JAR files

[image: image28.wmf]15/6/99

© Daniel DG Moth

26

Services

•

Reflection

–

java

.

lang

.reflect

•

Object Serialisation

–

java

.

io

.

(

Serializable

 or

Externalizable

)

–

serial version ID

•

Remote Method Invocation (RMI)

–

distributed GC

•

Java Native Interface (JNI)

[image: image29.wmf]15/6/99

© Daniel DG Moth

27

Sun Java

In closing…

•

‘Glasgow’

–

ERCS protocol, dnd, JAF

•

Enterprise JavaBeans (EJB)

–

transaction processing, multi-tier distributed systems

•

Remember: You can only use the Java

programming language

[image: image30.wmf]15/6/99

© Daniel DG Moth

28

Component Standards:

Which way ?

•

Microsoft for Windows

•

OMG for enterprise cross- platform/language

development

•

Sun for web and Java

[image: image31.wmf]15/6/99

© Daniel DG Moth

30

References

•

Web

–

http://www.

cs

.

virginia

.

edu

/~mvm3k/resources.html

–

http://www.

oberon

.

ch

/resources/index.html

–

http://www.

odateam

.com/cop/

•

comp.object.

corba

•

Component Strategies by

SIGS

pubs

•

WCOP

•

Book:

–

Clemens

Szyperski

, Component Software

[image: image32.wmf]15/6/99

© Daniel DG Moth

29

Component Technology:

The future

•

Evolution of current standards

•

Research into fundamentals (object composition)

•

Component-oriented languages

•

Quality, licensing

•

Component frameworks

References

Books

Author(s)
Title
Published by
Year

[Arn98]
Arnold, Ken &

James Gosling
The Java Programming Language
Addison-Wesley
1998

[Bak97]
Baker, Seán
CORBA Distributed Objects Using Orbix
Addison-Wesley
1997

[Boo99]
Booch, Grady &

James Rumbaugh &

Ivar Jacobson
The Unified Modeling Language

User Guide
Addison-Wesley
1999

[DSo99]
D’Souza, Desmond &

Alan Wils
Objects, Components, and Frameworks with UML - The Catalysis approach
Addison-Wesley
1998

[Gam95]
Gamma, Erich et al.
Design Patterns
Addison-Wesley
1995

[Lew98]
Lewis, Geoffrey &

Steven Barber &

Ellen Siegel
Programming with Java IDL
John Wiley & Sons
1998

[Lim98]
Lim, C. Wayne
Managing Software Reuse
Prentice-Hall
1998

[Mey97]
Meyer, Bertrand
Object-Oriented Software Construction
Prentice-Hall
1997

[Orf96]
Orfali, Robert &

Dan Harkey &

Jeri Edwards
The Essential Client/Server Survival Guide
Cambridge University Press
1996

[Orf98]
Orfali, Robert &

Dan Harkey
Client/Server Programming with

JAVA and CORBA
John Wiley & Sons
1998

[Pri97]
Priestley, Mark
Practical Object-Oriented Design
McGraw-Hill
1997

[Rum99]
Rumbaugh, James & Grady Booch &

Ivar Jacobson
The Unified Modeling Language

Reference Manual
Addison-Wesley
1999

[Szy98]
Szyperski, Clemens
Component Software

Beyond Object-Oriented Programming
Addison-Wesley
1998

Turabian, L. Kate
A Manual for Writers of Term Papers, Theses, and Dissertations
The University of Chicago Press
1996

[Win98]
Winder, Russel &

Graham Roberts
Developing Java Software
John Wiley & Sons
1998

[Wir90]
Wirfs-Brock, Rebecca et. al.
Designing Object-Oriented Software
Prentice-Hall
1990

Papers

Author(s)
Title
Appeared in

[Bos98]
Bosch, Jan &

Clemens Szyperski & Wolfgang Weck
Summary
Proceedings of the Third International Workshop on Component-Oriented Programming (WCOP ’98)

[Büc97]
Buchi, Martin &

Emil Sekerinski
Formal Methods for Component Software: The Refinement Calculus Perspective
Proceedings of the Second International Workshop on Component-Oriented Programming (WCOP ’97)

[Ciu96]
Ciupke, Oliver &

Rainer Schmidt
Components as Context-independent Units of Software
WCOP96 at ECOOP96

[Mik97]
Mikhajlov, Leonid &

Emil Sekerinski
The Fragile Base Class Problem and Its Impact on Component Systems
Proceedings of the Second International Workshop on Component-Oriented Programming (WCOP ’97)

[Ste97]
Steyart, Patrick &

Koen De Hondt &

Carine Lucas
Reuse Contracts as Component Interface Descriptions
Proceedings of the Second International Workshop on Component-Oriented Programming (WCOP ’97)

[Mik98]
Mikhajlov, Leonid &

Emil Sekerinski
A Study of The Fragile Base Class Problem
ECOOP98

[Wec96]
Weck, Wolfgang
Independently Extensible Component Frameworks
WCOP96 at ECOOP96

Articles

Author(s)
Title
Journal

[Hub99]
Hubert, Richard
CORBA components vs. EJB Styles
Component Strategies, 5/99

[Kai96]
Kain, J. Bradford
Components: The Basics
Object Magazine, 4/96

[Mey99]
Meyer, Bertrand
Rules for Component Builders
Software Development Magazine, 5/99

[Orc99]
Orchard, David
Transaction processing with EJB
Component Strategies, 4/99

[Ses99]
Sessions, Roger
Three Roads Diverged
Component Strategies, 6/99

[Yee99]
Yee, Andre
Making sense of the CORBA vs. COM debate
Performance Computing, 6/99

Internet Sites

Title
URL

Component Software Resources
http://www.cs.virginia.edu/~mvm3k/resources.html

Component Competence Resources
http://www.oberon.ch/resources/index.html

Component Technology Home Page
http://www.odateam.com/cop/

Components Online
http://www.components-online.com/

Component Based Development Forum
http://www.butlerforums.com/cbdforum/index.asp

[wOmg]
The OMG Home Page
http://www.omg.org/

[wPress]
Press Release
http://www.omg.org/news/pr99/trans.html

[wCom]
Microsoft COM Technologies
http://www.microsoft.com/com/default.asp

[wBean]
JavaBeans
http://www.javasoft.com/beans/

[wEjb]
Enterprise JavaBeans Specifications
http://java.sun.com/products/ejb/docs.html

[wSom]
IBM SOMobjects
http://www.software.ibm.com/ad/som/

Software Technology Review
http://www.sei.cmu.edu/str/

[wRpc]
Remote Procedure Call
http://www.sei.cmu.edu/str/descriptions/rpc.html

[wDce]
Distributed Computing Environment
http://www.sei.cmu.edu/str/descriptions/dce.html

[wCor]
Common Object Request Broker Archit.
http://www.sei.cmu.edu/str/descriptions/corba.html

[wDco]
Com, DCOM, and related Capabilities
http://www.sei.cmu.edu/str/descriptions/com.html

[wCC+]
The official CC+ homepage
http://www.quintessent.com/products/cc++/

[wTru]
The Trusted Components initiative
http://www.trusted-components.org/

� EMBED MS_ClipArt_Gallery ���

Dictionary

interfaces

component

spell-check

synonyms

� Multiple inheritance only worsens the situation, as it introduces problems such as inheriting from a common ancestor. ‘Mixins’, a particular style of multiple inheritance, attempts to solve some of the problems but it is only a technique and not part of any programming language [Pri97].

� Object composition can be applied using forwarding or delegation. When combined with delegation, it becomes much more powerful but, unfortunately, the problems of inheritance come with it [Szy98].

� References for the whole of this section are [wOmg], [Orf96], [Orf98], [Bak97], [wCor] and [Szy98].

� References for the whole of this section are [wCom], [wDco], [Yee99] and [Szy98]

� In addition to low-level machinery for connecting COM objects across machine boundaries, DCOM provides higher-level mechanisms to speed up remote operations, to provide security and to detect remote machine failures.

� This provides the same functionality as the event/listener model used in Java

� References for the whole of this section are [wBean], [wEjb], [Arn98], [Lew98], [Win98], [Orf98], [Orc99] and [Szy98]

� References for this section are, obviously sections 3.2, 3.3, 3.4, but also [Hub99], [Ses99] and [Szy98]

1
17
© Daniel DG Moth

_969197357

